20 research outputs found

    A new phase in the production of quality-controlled sea level data

    Get PDF
    Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us on ocean circulation variations in response to natural climate modes such as El Niño and the Pacific Decadal Oscillation, and anthropogenic forcing. Comparing numerical climate models to a consistent set of observations enables us to assess the performance of these models and help us to understand and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL_cci) merges data from nine different altimeter missions in a clear, consistent and well-documented manner, selecting the most appropriate satellite orbits and geophysical corrections in order to further reduce the error budget. This paper summarises the corrections required, the provenance of corrections and the evaluation of options that have been adopted for the recently released v2.0 dataset (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). This information enables scientists and other users to clearly understand which corrections have been applied and their effects on the sea level dataset. The overall result of these changes is that the rate of rise of global mean sea level (GMSL) still equates to ∌ 3.2 mm yr−1 during 1992–2015, but there is now greater confidence in this result as the errors associated with several of the corrections have been reduced. Compared with v1.1 of the SL_cci dataset, the new rate of change is 0.2 mm yr−1 less during 1993 to 2001 and 0.2 mm yr−1 higher during 2002 to 2014. Application of new correction models brought a reduction of altimeter crossover variances for most corrections

    Heat stored in the Earth system 1960–2020: where does the energy go?

    Full text link
    The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4

    Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level

    Get PDF
    A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    4. Mesure des variations du niveau de la mer

    No full text
    Au cours du XXe siĂšcle, le niveau de la mer a Ă©tĂ© mesurĂ© Ă  l’aide de marĂ©graphes installĂ©s le long de certaines cĂŽtes continentales et sur quelques Ăźles. L’analyse de ces donnĂ©es indique qu’au cours du siĂšcle passĂ© le niveau de la mer s’est Ă©levĂ© Ă  une vitesse moyenne de l’ordre de 1,7 mm par an. AltimĂ©trie spatiale Depuis le dĂ©but des annĂ©es 1990, les satellites altimĂ©triques permettent de mesurer avec une grande prĂ©cision l’évolution du niveau moyen des mers sur l’ensemble du domaine ocĂ©ani..

    Improved wet path delays for all ESA and reference altimetric missions

    Get PDF
    AbstractThe wet tropospheric correction (WTC) is still a significant error source in most altimetric products. For studies such as sea level change, as those performed in the scope of the ESA Sea Level Climate Change Initiative (SL_cci) project, the use of uniform and consistent WTC datasets are of major importance. For this purpose, a set of improved WTC, using the Global Navigation Satellite System (GNSS) derived Path Delay (GPD) algorithm, was envisaged for the main six altimetric missions: the so-called reference missions (TOPEX/Poseidon, Jason-1 and Jason-2) and the three ESA missions (ERS-1, ERS-2 and Envisat).The GPD methodology is based on the combination of wet path delays derived from zenith total delays calculated at a network of coastal GNSS stations and valid microwave radiometer (MWR) measurements at altimeter nearby points. At each altimeter point with an invalid MWR value, the WTC is estimated from the set of observations, along with the associated mapping error, using a linear space-time objective analysis technique that takes into account the spatial and temporal variability of the WTC field and the accuracy of each data set used. In the absence of observations, tropospheric delays from the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis (ERA) Interim model are adopted.Originally designed to improve the WTC in the coastal zone, the GPD evolved to include the global ocean, correcting for land and ice contamination in the MWR footprint, or spurious measurements due to e.g. instrument malfunction.This paper presents an overview of the GPD implementation for the afore-mentioned six altimetric missions.The GPD products have been validated by comparison with the WTC adopted as the reference correction by the Archiving, Validation, and Interpretation of Satellite Data in Oceanography (AVISO): the so-called composite correction (Comp) for all missions except Jason-2, for which the version D of the Geophysical Data Records (GDR-D) Advanced Microwave Radiometer (AMR) WTC is adopted. Various sea level anomaly (SLA) statistical analyses have been performed and are summarised in this paper: differences in SLA variance calculated along satellite tracks and at crossovers; SLA variance difference function of distance from the coast or function of latitude.Results show that the GPD WTC evidence a very significant improvement with respect to the Comp correction, particularly at polar and coastal regions, for all ESA and TOPEX/Poseidon missions. For the last, the impact is particularly significant in the second part of the mission, since detected anomalies present in the TOPEX Microwave Radiometer products are corrected by the algorithm. For Jason-1 and Jason-2, some improvements are observed in the coastal regions, although globally not very significant, particularly for Jason-2. This is attributed to the good performance of the WTC present in the most recent Jason-1 and Jason-2 products.The GPD WTC constitutes a coherent dataset of global and continuous corrections, for most missions a major improvement with respect to the baseline MWR and the Comp wet tropospheric corrections

    Local sea level trends, accelerations and uncertainties over 1993–2019

    No full text
    International audienceAbstract Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83 mm . yr −1 with values ranging from 0.78 to 1.22 mm . yr −1 . For accelerations, uncertainties range from 0.057 to 0.12 mm . yr −1 , with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets. Local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties are provided

    Reducing the Uncertainty in the Satellite Altimetry Estimates of Global Mean Sea Level Trends Using Highly Stable Water Vapor Climate Data Records

    No full text
    The global mean sea level (GMSL) has risen by 3.3 ± 0.2 mm.yr−1 (68% confidence level) over 1993–2021. The wet troposphere correction (WTC) used to compute the altimetry-based mean sea level data is known to be a large source of error in the GMSL long-term stability. The WTC is derived from the microwave radiometers (MWR) on board the altimetry missions. In order to improve the long-term estimates of the GMSL, we propose an alternative WTC computation based on highly stable climate data records (CDRs) of water vapor derived from independent MWR measurements on board meteorological satellites. A polynomial model is applied to convert water vapor to WTC. The CDR-derived WTC enables reducing the low frequency uncertainty of the WTC applied to the altimetry data, hence reducing the uncertainty of the GMSL trend estimate. Furthermore, over 2016–2021, the comparison of MWR-based with CDR-based WTC shows a likely drift of the Jason-3 MWR WTC on the order of −0.5 mm.yr−1 that would lead to an overestimation of the GMSL trend from 2016
    corecore